prosdo.ru 1 2 3 4

Теорема 12. {Первый достаточный признак экстремума) Пусть х0 - критическая точка непрерывной функции f(х). Если f' (х) при переходе через точку x0 меняет знак с «+» на «-», то x0 — точка локального максимума. Если f '(х) при переходе через точку х0 меняет знак с «-» на «+», то х0- точка локального минимума. Если f '(х) при переходе через точку x0 не меняет знак, то х0 не является точкой локального экстремума.

Доказательство. Пусть x0 - точка возможного экстремума функции, причем

f '(x)>0 для x<х0, A x Э U(x0,Дельта);

f '(x)<0 для х>х0, A x Э U(x0 ,Дельта ). Тогда

при f '(x)>0 для x<х0, A x Э U(x0,Дельта); => f(x0)>f(x),

при f '(x)<0 для х>х0, A x Э U(x0 ,Дельта). => f(x0)
следовательно A x Э U(x0,Дельта): f(x0)>f(x), т. е. точка х0 является точка локального максимума.

Аналогично доказывается и существование точки локального минимума. Если f `(x) сохраняет знак в окрестности точки х0, то в этой окрестности функция монотонна, т. е. точка х0 не является точкой локального экстремума. •

Аннотация

Данная работа преследует несколько целей. Первая из которых заключается в изложении нового подхода к Платоновым телам (ПТ) Второй, не менее важной, целью являет освещение роли Платоновых тел в контексте развития математики и науки в целом.


Платоновы тела также рассматриваются и с более общих позиций – их симметрия, связь с «золотым сечением», их влияния на развитие математики и всего теоретического естествознания. Обсуждаются результаты их использования в науке прошлых веков («Божественная пропорция» Пачоли, «Космический кубок» Кеплера, «икосаэдрическая идея» Клейна). Приводятся примеры современных научных открытий, основанных на ПТ (квазикристаллы, фуллерены, новый подход к созданию теории элементарных частиц).

Уделяется внимание и роли Платоновых тел в создании «Начал» Евклида. Согласно «гипотезе Прокла» развитие математики, начиная с Евклида, осуществлялось в двух направлениях: «Классическая математика» (позаимствовала в «Началах» аксиоматический подход, теорию чисел и теорию иррациональностей) и «Математика гармонии» (основана на ПТ и «золотом сечении»).

На основании проделанной работы делается вывод: по своему влиянию на развитие математики и науки в целом Платоновы тела вместе с «золотым сечением» можно поставить в один ряд не только с теоремой Пифагора (Кеплер), но и с натуральными и иррациональными числами.
Содержание:


  1. Платоновы тела

  2. Симметрия Платоновых тел

  3. Связь Платоновых тел с «золотым сечением»

  4. Гипотеза Прокла: с какой целью Евклид написал свои «Начала»?

  5. Новый взгляд на развитие математики, вытекающий из гипотезы Прокла

  6. «Космический кубок» Иоганна Кеплера

  7. Платоновы тела и «золотое сечение» в «Божественной пропорции» Луки Пачоли

  8. Икосаэдрическая идея Феликса Клейна

  9. Квазикристаллы Дана Шехтмана

  10. Фуллерены (Нобелевская Премия по химии - 1996)

  11. Новые подходы в теории элементарных частиц

  12. Экспериментальное доказательство проявления «золотого сечения» в квантовом мире

  13. Сюрпризы для теоретического естествознания
  14. Заключение: Платоновы тела как уникальные геометрические объекты науки и природы


  15. Литература




Пока алгебра и геометрия двигались каждая своим путем,

их прогресс был медленным, а приложения ограниченными.

Но когда эти науки объединили свои усилия, они

позаимствовали друг у друга новые жизненные силы

и с тех пор быстрыми шагами направились к совершенству

(Жозеф Луи Лагранж)

1. Платоновы тела

Правильные многогранники известны с древнейших времён. Но почему правильные многогранники называют Платоновыми телами?

Платон (428-348 до н.э.) в своих трудах много внимания уделил взглядам пифагорейцев на правильные тела, поскольку и сам считал, что вся Вселенная имеет форму додекаэдра, а материя состоит из атомов четырех типов, которые имеют форму тетраэдров, кубов, октаэдров и икосаэдров. Он первым воспел красоту правильных выпуклых многогранников, обладающих удивительной симметрией в трёхмерном пространстве. Грани этих многогранников – это правильные многоугольники с одинаковым числом сторон; в каждой вершине многогранников сходится одинаковое число рёбер. Примечательно, что все пять Платоновых тел в разные времена использовались в качестве игральных костей.

Теэтет Афинский (417 - 369 до н. э.), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.


После них эстафету принял Евклид (365-300 до н.э.). В заключительной книге знаменитых «Начал» Евклид дал не только полный, подробный анализ Платоновых тел, но и простейшее геометрическое доказательство существования не более пяти правильных тел.

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Венниджера «Модели многогранников». В русском переводе эта книга опубликована издательством «Мир» в 1974 г. Эпиграфом к книге выбрано высказывание Бертрана Рассела: «Математика владеет не только истиной, но и высокой красотой красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Эта мысль Бертрана Рассела, прежде всего, может быть отнесена к правильным многогранникам, с которых и начинается книга М. Венниджера. Эти многогранники принято называть Платоновыми телами, названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии. Начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники.

Первый из них – это тетраэдр (Рис.1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.














(а)




(б)

(в)













(г) (д)

Рисунок 1. Платоновы тела: (а) тетраэдр («Огонь»), (б) гексаэдр или куб («Земля»), (в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр.

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г). Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в).

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника –



пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д).

Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.


2. Симметрия Платоновых тел

С давних времен Платоновы тела привлекали внимание исследователей своими исключительными симметрическими свойствами. Обычно для характеристики симметрии некоторого объекта приводится полная совокупность элементов симметрии. Например, группа симметрий снежинки имеет вид L6. Это означает, что снежинка имеет одну ось симметрии шестого порядка L6, то есть, может 6 раз «самосовмещаться» при повороте вокруг оси, и 6 плоскостей симметрии. Группа симметрий цветка ромашки, имеющего 24 лепестка, имеет вид L2424Р, то есть, цветок имеет одну ось 24-го порядка и 24 плоскости симметрии. В таблице 1 приведены группы симметрий всех «Платоновых Тел».

Таблица 1. Группы симметрий Платоновых тел

Многогранник

Форма граней

Симметрия

Тетраэдр

Равносторонние треугольники

4L3 3L2

Куб

Квадраты

3L4 4L3 6L2 9Р С

Октаэдр

Равносторонние треугольники

3L4 4L3 6L2 9Р С

Додекаэдр


Равносторонние пятиугольники

6L5 10L3 15L2 15Р С

Икосаэдр

Равносторонние треугольники

6L5 10L3 15L2 15Р С

Анализ симметрий «Платоновых Тел», приведенных в Табл. 1, показывает, что группы симметрий куба и октаэдра, а также додекаэдра и икосаэдра совпадают. Это связано с тем, что додекаэдр дуален икосаэдру, а куб дуален октаэдру. Анализ этой таблицы показывает, что додекаэдр и икосаэдр выделяются своими симметрическими свойствами среди других Платоновых тел. Группа симметрий 6L5 10L3 15L2 15Р С означает, что додекаэдр и икосаэдр обладают 6 линиями симметрии 5-го порядка L5, 10 линиями симметрии 3-го порядка L3, 15 линиями симметрии 2-го порядка L2, 15 плоскостями симметрии Р и центром симметрии С.

3. Связь Платоновых тел с «золотым сечением».

Анализ Платоновых тел на Рис. 1 показывает, что два Платоновых тела - додекаэдр и двойственный ему икосаэдр непосредственно связаны с «золотым сечением». Действительно, гранями додекаэдра (Рис. 1-д) являются пентагоны, т.е., правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр (Рис. 1-г), то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что «золотое сечение» играет существенную роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотое сечение в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через Ri. Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через Rm. Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через Rc . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра,


имеющего ребро единичной длины, выражается через золотую пропорцию:
(Табл.2).

Таблица 2. Золотая пропорция в сферах додекаэдра и икосаэдра



Заметим, что отношение радиусов одинаково, как для икосаэдра, так и

для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотое сечение является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины».



следующая страница >>