prosdo.ru | 1 2 3 4 Теорема 12. {Первый достаточный признак экстремума) Пусть х0 - критическая точка непрерывной функции f(х). Если f' (х) при переходе через точку x0 меняет знак с «+» на «-», то x0 — точка локального максимума. Если f '(х) при переходе через точку х0 меняет знак с «-» на «+», то х0- точка локального минимума. Если f '(х) при переходе через точку x0 не меняет знак, то х0 не является точкой локального экстремума.
Пока алгебра и геометрия двигались каждая своим путем, их прогресс был медленным, а приложения ограниченными. Но когда эти науки объединили свои усилия, они позаимствовали друг у друга новые жизненные силы и с тех пор быстрыми шагами направились к совершенству (Жозеф Луи Лагранж) 1. Платоновы тела Правильные многогранники известны с древнейших времён. Но почему правильные многогранники называют Платоновыми телами? Платон (428-348 до н.э.) в своих трудах много внимания уделил взглядам пифагорейцев на правильные тела, поскольку и сам считал, что вся Вселенная имеет форму додекаэдра, а материя состоит из атомов четырех типов, которые имеют форму тетраэдров, кубов, октаэдров и икосаэдров. Он первым воспел красоту правильных выпуклых многогранников, обладающих удивительной симметрией в трёхмерном пространстве. Грани этих многогранников – это правильные многоугольники с одинаковым числом сторон; в каждой вершине многогранников сходится одинаковое число рёбер. Примечательно, что все пять Платоновых тел в разные времена использовались в качестве игральных костей. Теэтет Афинский (417 - 369 до н. э.), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.
(б) (в) (г) (д) Рисунок 1. Платоновы тела: (а) тетраэдр («Огонь»), (б) гексаэдр или куб («Земля»), (в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум») Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр. Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г). Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в). Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника – пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д). Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.
Анализ симметрий «Платоновых Тел», приведенных в Табл. 1, показывает, что группы симметрий куба и октаэдра, а также додекаэдра и икосаэдра совпадают. Это связано с тем, что додекаэдр дуален икосаэдру, а куб дуален октаэдру. Анализ этой таблицы показывает, что додекаэдр и икосаэдр выделяются своими симметрическими свойствами среди других Платоновых тел. Группа симметрий 6L5 10L3 15L2 15Р С означает, что додекаэдр и икосаэдр обладают 6 линиями симметрии 5-го порядка L5, 10 линиями симметрии 3-го порядка L3, 15 линиями симметрии 2-го порядка L2, 15 плоскостями симметрии Р и центром симметрии С. 3. Связь Платоновых тел с «золотым сечением». Анализ Платоновых тел на Рис. 1 показывает, что два Платоновых тела - додекаэдр и двойственный ему икосаэдр непосредственно связаны с «золотым сечением». Действительно, гранями додекаэдра (Рис. 1-д) являются пентагоны, т.е., правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр (Рис. 1-г), то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что «золотое сечение» играет существенную роль в конструкции этих двух Платоновых тел. Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотое сечение в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через Ri. Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через Rm. Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через Rc . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра,
Заметим, что отношение радиусов ![]() для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида. В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотое сечение является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины». следующая страница >> |
![]() |