prosdo.ru
добавить свой файл
1
Математическое описание сигналов


Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания - математическая модель сигнала. Как правило, описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) – s(х), y(t) и т.п. Такая форма описания и графического представления сигналов называется динамической (сигнал в реальной динамике его поведения по аргументам). Функции математического описания сигналов могут быть как вещественными, так и комплексными. Выбор математического аппарата описания определяется простотой и удобством его использования при анализе и обработке сигналов.

Спектры сигналов

Принцип моделирования реального сигнала аналитической функцией некоторого (возможно бесконечного) числа переменных f(t1, t2,…tn) позволяет при его анализе и обработке широко использовать математическое описание по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, кусочно-непрерывный и дифференцируемый, не имеющий разрывов второго рода (бесконечных значений на интервале своего задания), можно представить в виде суммы более простых сигналов. В частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье.

Рассматривая функцию f(t1, t2,…tn) как элемент некоторого пространства функций, можно провести ее разложение в базисе этого пространства .

Разложение (анализ) сигнала отражает общий подход к исследованию физического объекта x путем его представления в виде суммы элементарных блоков xi: x=xi. Для сигналов или изображений это могут быть гармонические функции (базис Фурье-анализа), гармонические функции вида sin(x)/x (базис Шеннона-Котельникова), прямоугольные функции (базис Хаара), некоторые функции специального вида (вейвлет-анализ) .


В общем случае, базисом бесконечномерного линейного пространства , на котором определено понятие скалярного произведения функций (векторов), т.е. Гильбертова пространства, называется набор линейно независимых функций (векторов) {vi}такой, что для любой f существует единственная линейная комбинация векторов {vi}

f=c1v1+c2v2+…+cnvn+… (1)

где {сi} - коэффициенты разложения, vi - компоненты базиса, указывающие направление в пространстве.

Коэффициенты разложения определяются как скалярное произведение сигнала f и базисных функций:

сi=i> (2)

и (1) можно переписать в виде:

f=i(i>vi) (3)

В том случае, если исследуемый сигнал аппроксимируется кусочно-непрерывной дифференцируемой функцией, т.е. отвечает условиям известной теоремы Дирихле, для f(t1, t2,…tn) существует преобразование Фурье – разложение в базисе комплексной экспоненты. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Общей целью при применении разложения по базису является представление сигнала в виде, удобном для исследования и обработки, а также приближение представления сигнала к оптимальному путем минимизации числа компонент разложения при максимальном качестве аппроксимации. Очевидно, что результативность применения определенного набора базисных функций зависит от природы сигнала. Главное условие допустимости разложения - ортогональность базисных функций. Но при качественном анализе сигналов могут применяться и неортогональные (биортогональные) функции, выявляющие какие-либо характерные особенности сигналов, полезные для интерпретации физических данных.


Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности . Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник по частотному спектру сигнала. Широкое использование гармонических функций при анализе сигналов объясняется тем, что они являются достаточно простыми ортогональными функциями и определены при всех значениях непрерывных переменных. Кроме того, они являются собственными функциями времени, сохраняющими свою форму при прохождении колебаний через любые линейные системы и системы обработки данных с постоянными параметрами (изменяются только амплитуда и фаза колебаний)

Примеры частотного представления сигналов приводятся ниже

Классификация сигналов

Классификация осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные

1

Рис. 1. Классификация сигналов.

Обычно выделяют два класса детерминированных сигналов: периодические и непериодические.

К периодическим относят гармонические и полигармонические сигналы. Для периодических сигналов выполняется общее условие s(t) = s(t + kT), где k = 1, 2, 3, ... - любое целое число, Т - период, являющийся конечным отрезком независимой переменной.


1

tss1-10


Рис. 2. Гармонический сигнал и его спектр


Гармонические сигналы (или синусоидальные), описываются следующими формулами:

s(t) = Asin (2fоt+) = Asin (оt+), (4)

s(t) = Acos(оt+),

где А, fo, o,  - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, fо - циклическая частота в герцах, о= 2fо - угловая частота в радианах,  и - начальные фазовые углы в радианах. Период одного колебания T = 1/fо = 2/o. При  = -/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты fо (при t = 0).

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =An sin (2fnt+n), (5)

или непосредственно функцией s(t) = y(t  kTp), k = 1,2,3,..., где Тр - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение fp =1/Tp называют фундаментальной частотой колебаний. Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (fо=0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд An и фаз n, с периодами, кратными периоду фундаментальной частоты fp. Другими словами, на периоде фундаментальной частоты fp, которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).


В качестве примера на рис. 3 приведен отрезок периодической сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний с разными значениями частоты и начальной фазы колебаний. Математическое описание сигнала задается формулой:

s(t) =Akcos(2fkt+k),

где: Ak = {5, 3, 4, 7} - амплитуда гармоник; fk = {0, 40, 80, 120} - частота в герцах; k = {0, -0.4, -0.6, -0.8} - начальный фазовый угол колебаний в радианах; k = 0, 1, 2, 3. Фундаментальная частота сигнала 40 Гц.

1

Рис. 3. Модель сигнала.

1

Рис. 4. Спектр сигнала.

Частотное представление данного сигнала (спектр сигнала) приведено на рис. 4. Обратим внимание, что частотное представление периодического сигнала s(t), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с временным представлением.

Периодический сигнал любой произвольной формы может быть представлен в виде суммы гармонических колебаний с частотами, кратными фундаментальной частоте колебаний fр= 1/Тр. Для этого достаточно разложить один период сигнала в ряд Фурье по тригонометрическим функциям синуса и косинуса с шагом по частоте, равным фундаментальной частоте колебаний f = fp:

s(t) = (ak cos 2kft + bk sin 2kft), (6)

ao = (1/T)s(t) dt, ak = (2/T)s(t) cos 2kft dt, (7)


bk = (2/T)s(t) sin 2kft dt. (8)

Количество членов ряда Фурье K = kmax обычно ограничивается максимальными частотами fmax гармонических составляющих в сигналах так, чтобы fmax < K·fp. Однако для сигналов с разрывами и скачками имеет место fmax   , при этом количество членов ряда ограничивается по допустимой погрешности аппроксимации функции s(t).

Одночастотные косинусные и синусные гармоники можно объединить и представить разложение в более компактной форме:

s(t) = Sk cos (2kft-k),

Sk =, k = argtg (bk/ak). (9
1

Рис. 5 Прямоугольный периодический сигнал (меандр).

Пример представления прямоугольного периодического сигнала (меандра) в виде амплитудного ряда Фурье в частотной области приведен на рис. 5 Сигнал четный относительно t=0, не имеет синусных гармоник, все значения k для данной модели сигнала равны нулю.

Информационными параметрами полигармонического сигнала могут быть как определенные особенности формы сигнала (размах от минимума до максимума, экстремальное отклонение от среднего значения, и т.п.), так и параметры определенных гармоник в этом сигнале. Так, например, для прямоугольных импульсов информационными параметрами могут быть период повторения импульсов, длительность импульсов, скважность импульсов (отношение периода к длительности). При анализе сложных периодических сигналов информационными параметрами могут также быть:

Текущее среднее значение за определенное время, например, за время периода:

(1/Т)s(t) dt.

- Постоянная составляющая одного периода:

(1/Т)s(t) dt.

- Среднее выпрямленное значение:

(1/Т)|s(t)| dt.

- Среднее квадратичное значение:

.

К непериодическим сигналам относят почти периодические и апериодические сигналы. Основным инструментом их анализа также является частотное представление.

tss1-12

Рис. 6 Почти периодический сигнал и спектр его амплитуд.

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик. Так, например, сумма двух гармоник с частотами 2fи 3.5f дает периодический сигнал (2/3.5 – рациональное число) с фундаментальной частотой 0.5f, на одном периоде которой будут укладываться 4 периода первой гармоники и 7 периодов второй. Но если значение частоты второй гармоники заменить близким значением f, то сигнал перейдет в разряд непериодических, поскольку отношение 2/ не относится к числу рациональных чисел. Как правило, почти периодические сигналы порождаются физическими процессами, не связанными между собой. Математическое отображение сигналов тождественно полигармоническим сигналам (сумма гармоник), а частотный спектр также дискретен.

Апериодические сигналы составляют основную группу непериодических сигналов и задаются произвольными функциями времени. На рис. 7 показан пример апериодического сигнала, заданного формулой на интервале (0, ):


s(t) = exp(-at) - exp(-bt),

где a и b – константы, в данном случае a = 0.15, b = 0.17.

tss1-17 tss1-13

Рис. 7. Апериодический сигнал и модуль спектра. Рис. 8. Импульсный сигнал и модуль спектра.

К апериодическим сигналам относятся также импульсные сигналы, которые в радиотехнике и в отраслях, широко ее использующих, часто рассматривают в виде отдельного класса сигналов. Импульсы представляют собой сигналы, как правило, определенной и достаточно простой формы, существующие в пределах конечных временных интервалов. Сигнал, приведенный на рис. 8, относится к числу импульсных.

Частотный спектр апериодических сигналов непрерывен и может содержать любые гармоники в частотном интервале [0, ]. Для его вычисления используется интегральное преобразование Фурье, которое можно получить переходом в формулах от суммирования к интегрированию при f  0 и kf  f.

s(t) =(a(f) cos 2ft + b(f) sin 2ft) df =S(f) cos(2ft-(f)) df. (10)

a(f) = s(t) cos 2ft dt, b(f) = s(t) sin 2ft dt, (11)

S(f) =, (f) = argtg (b(f)/a(f)). (12)

Частотные функции a(f), b(f) и S(f) представляют собой не амплитудные значения соответствующих гармоник на определенных частотах, а распределения спектральной плотности амплитуд этих гармоник по частотной шкале.

Если нас не интересует поведение сигнала за пределами области его задания [0, Т], то эта область может восприниматься, как один период периодического сигнала, т.е. значение Т принимается за фундаментальную частоту периодический колебаний, при этом для частотной модели сигнала может применяться разложение в ряды Фурье по области его задания В классе импульсных сигналов выделяют подкласс радиоимпульсов. Пример радиоимпульса приведен на рис. 9.




Рис. 9. Радиоимпульс и модуль его спектра.

Уравнение радиоимпульса имеет вид

s(t) = u(t) cos(2fot+o).

где cos(2fot+o) – гармоническое колебание заполнения радиоимпульса, u(t) – огибающая радиоимпульса. Положение главного пика спектра радиоимпульса на частотной шкале соответствует частоте заполнения fo, а его ширина определяется длительностью радиоимпульса. Чем больше длительность радиоимпульса, тем меньше ширина главного частотного пика.

Все сигналы также можно разделить на два класса: с ограниченной (конечной) энергией и с бесконечной энергией.

Для сигналов с ограниченной энергией (иначе – сигналов с интегрируемым квадратом) должно выполняться соотношение:

|s(t)|2dt < ∞.

Как правило, к этому классу сигналов относятся апериодические и импульсные сигналы, не имеющие разрывов 2-го рода при ограниченном количестве разрывов 1-го рода []. Любые периодические, полигармонические и почти периодические сигналы, а также сигналы с разрывами и особыми точками 2-го рода, уходящими в бесконечность, относятся к сигналам с бесконечной энергией. Для их анализа применяются специальные методы.

Иногда в отдельный класс выделяют сигналы конечной длительности, отличные от нуля только на ограниченном интервале аргументов (независимых переменных). Такие сигналы обычно называют финитными.

Классификация случайных сигналов

Случайным сигналом называют функцию времени, значения которой заранее неизвестны, и могут быть предсказаны лишь с некоторой вероятностью. Случайный сигнал отображает случайное физическое явление или физический процесс, причем зарегистрированный в единичном наблюдении сигнал не воспроизводится при повторных наблюдениях и не может быть описан явной математической зависимостью. При регистрации случайного сигнала реализуется только один из возможных вариантов (исходов) случайного процесса, а достаточно полное и точное описание процесса в целом можно произвести только после многократного повторения наблюдений и вычисления определенных статистических характеристик ансамбля реализаций сигнала. В качестве основных статистических характеристик случайных сигналов принимают:

а) закон распределения вероятности нахождения величины сигнала в определенном интервале значений;

б) спектральное распределение мощности сигнала.

Случайные сигналы подразделяют на стационарные и нестационарные. Случайные стационарные сигналы сохраняют свои статистические характеристики в последовательных реализациях случайного процесса. Что касается случайных нестационарных сигналов, то их общепринятой классификации не существует. Как правило, из них выделяют различные группы сигналов по особенностям их нестационарности.