prosdo.ru
добавить свой файл
1 ... 7 8 9 10

МОСТОВЫЕ СХЕМЫ

Общие сведения. Мостовые схемы широко применяются в электроизмерительной технике. Они дают возможность измерять сопротивление, индуктивность, емкость и угол потерь конденсаторов, взаимную индуктивность и частоту. Мостовые схемы широко исполь­зуются также для измерения неэлектрических величин электриче­скими методами. Например температуры, малых перемещений, и других.

Широкое применение мостовых схем объясняется большой точностью изме­рений, высокой чувствительностью, воз­можностью измерения различных вели­чин.

Мост содержит резисторы, включенные четырехугольником. Каждый резистор называется плечом (или ветвью) моста. В диаго­наль, называемую выходной, включен нуль-индикатор, например гальва­нометр; выводы другой диагонали подключены к источнику тока.

Если произведения сопротивлений резисторов противолежащих плеч равны, мост уравновешен, ток в выходной диагонали равен нулю. Из этого следует возможность включения измеряемого сопротивления в любое плечо моста и определение его величины через сопротивления трех других плеч.

В мостах переменного тока сопротивления плеч моста имеют комплексный характер. Для уравновешенного состояния моста необходимо равенство произведений комплексных сопротивлений противолежащих плеч. Поэтому для равновесия мостов переменного тока не­обходимо регулировать два параметра схемы, чтобы вы­полнить оба условия равновесия моста:

1. Равенство произведений комплексных сопротивлений противолежащих плеч;

2. Равенство сумм углов сдвига токов относительно напряжений в противолежащих плечах.

1) Z1Z4 = Z2Z3 z1z4expj(1+4)=z2z3expj(2+3)  2) 1+ 4 = 2+ 3 .


Эти условия равносильны и обязательны для достиже­ния равновесия моста.

Второе условие указывает, при каком расположении комплексных сопротивлений можно уравно­весить схему. Если в двух смежных плечах включены чисто активные сопротивления, то в двух других смежных плечах могут быть вклю­чены индуктивности или емкости.

Если активные сопротивления включены в противоположные плечи, то в одно из противоположных плеч должна быть включена индуктивность, в другое - емкость.

Мосты, в которых измеряемая величина определяется из усло­вия равновесия, называются уравновешенными. Иногда измеряемая величина определяется по току или напряжению выходной диагонали моста. Такие мосты называются неуравновешенными.

Чувствительность мостов - это отношение приращения выходного сигнала к приращению вход­ной величины. Выходным сигналом мостовой схемы может быть ток, напряже­ние или мощность. Входной величиной является измеряемая вели­чина (сопротивление, индуктивность и др.), включенная в плечо мо­ста. В соответствии с этим различают чувствительность мостовой схемы по току, напряжению и мощности. Доказано, что чувствительность моста максимальна, когда сопротивления всех плеч равны между собой и равны сопротивлению гальванометра.

Мосты для измерения сопротивления на постоянном токе

Одинарными мостами посто­янного тока называют четырехплечие мосты с питанием от источника постоянного тока. Они используются для измере­ния сопротивления на постоянном токе. В качестве нуль индикаторов в мо­стах постоянного тока применяются магнитоэлектрические гальванометры.

Процесс измерения заключается в том, что в одно из плеч моста включают измеряемое сопротив­ление и, изменяя сопротивление другого плеча, доби­ваются отсутствия тока в цепи гальванометра. Из условия равновесия определяется значение сопротивления.

Одинарные мосты постоянного тока весьма распространены; из­вестен ряд конструкций утих приборов с различными характеристи­ками. Погрешность моста зависит от пределов измерения и указы­вается обычно в паспорте моста.


Конструктивно мосты оформляются в виде переносных приборов; они рассчитаны на работу с собственным или наружным нуль индикатором.

При измерении малых сопротивлений (мень­ших 10 Ом) на результат изме­рения существенное влияние оказывает сопротивление соединитель­ных проводов, включенных последовательно с измеряемым сопро­тивлением. Погрешность, вносимая соединительными проводами, может оказаться недопустимой. Уменьшить ее можно, включив измеряемое сопротивление по 4-х зажимной схеме. В этом случае два провода входят в цепи диагоналей, а два другие – в цепи смежных плеч, поэтому сопротивления проводов не влияют на результат измерения.
ЭЛЕКТРОННО-ЛУЧЕВЫЕ ОСЦИЛЛОГРАФЫ

Общие сведения. Электронно-лучевые (электронные) ос­циллографы предназначены для визуального наблюдения, изме­рения и регистрации электрических сигналов. Возможность на­блюдения изменяющихся во времени сигналов делает осцилло­графы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографов являются широкий час­тотный диапазон, высокая чувствительность и большое входное сопротивление. Все это обусловило их широкое практическое применение.

Осциллогра­фы могут быть предназначены для наблюдения и измерения непрерывных или импульсных процессов; периодических и непериодических сигналов непрерывного и импульсного харак­тера в широком (до 100 МГц) диапазоне частот. Выпускаются также осциллографы специального назначения: многофункцио­нальные со сменными входными блоками, запоминающие для регистрации одиночных импульсов, стробоскопические для иссле­дования высокочастотных процессов и другие. По количеству одновременно исследуемых сигналов осциллографы могут быть одноканальными и двухканальны­ми. В последнее время получили распространение цифровые электронные осциллографы.

Осциллографы могут различаться чувствительностью, поло­сой пропускания, погрешностью воспроизведения формы кривой и другими характеристиками.


В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электронно-лучевой трубки.

Электронно-лучевые трубки. Простейшая однолучевая труб­ка (ЭЛТ) представляет собой стеклянный баллон, из которого откачан воздух и в котором расположены подогревае­мый катод, модулятор (сетка), фокусирующий анод А1, ускоряющий анод А2, две пары взаимно перпендикулярных откло­няющих пластин - горизонтальные и вертикальные отклоняющие пластины. Внутренняя поверхность дна баллона – экран - покрыта люминофором, способным светиться под дей­ствием бомбардировки электронами. Совокупность катода, сетки и анодов называют электронной пушкой. Конструктивно эти электроды выполнены в виде цилиндров, расположенных по оси трубки. Электронная пушка излучает узкий пучок электронов - электронный луч. Для этого на электроды пушки подают напря­жение. Интенсивность электронного луча регулиру­ют путем изменения отрицательного относительно катода напря­жения на модуляторе, что приводит к изменению яркости свече­ния люминофора. Напряжение на первом аноде фокусирует поток электронов в узкий луч, позволяющий получить на экране трубки светящееся пятно малого размера. Для ускорения электронов до скорости, необходимой для свечения люминофора, на второй анод подается высокое положительное напряжение. Сформированный электронный луч проходит между парами отклоняющихся плас­тин и под действием напряжений, приложенных к этим пластинам, отклоняется, соответственно, по осям координат Х и У, вызывая смещение светящегося пятна на экране труб­ки.

Осциллографические электронно-лучевые трубки характери­зуются чувствительностью, полосой пропускания, длительностью послесвечения, рабочей площадью экрана, цветом свечения лю­минофора. Чувствительность трубки S
T = l/u, где l — отклонение луча на экране трубки, вызванное напряжением u, приложенным к отклоняющим пластинам. Обычно Sт=0,55 мм/В. С увеличе­нием частоты напряжения чувствительность трубки падает. Верхняя частота полосы пропускания трубки равна такой часто­те, при которой ее чувствительность уменьшается до значения 0,707 (на 3 дБ), где — чувствительность на малых часто­тах. У рассматриваемых электронно-лучевых трубок верхняя час­тота примерно 100 МГц.


Длительность послесвечения экрана характеризуют временем от момента прекращения действия электронного луча до момента, когда яркость изображения составит 1 % первоначальной. Труб­ки с длительным послесвечением (более 0,1 с) облегчают наблю­дение непериодических и медленно изменяющихся сигналов. Спе­циальные запоминающие трубки позволяют сохранить изображе­ние сигнала на интервалы времени от нескольких минут до нескольких суток.

Рабочая площадь экрана определяется диаметром трубки. Выпускают трубки с диаметром 70 мм и более. Тип люминофора определяет цвет свечения экрана. Обычно находят применение трубки с зеленым цветом свечения. Для фотографирования изо­бражения с экрана осциллографа используют трубки с голубым свечением экрана.

Устройство и принцип действия осциллографа. Упрощенная функциональная схема осциллографа включает в себя электронно-лучевую трубку, входной делитель напряжения, усилитель вертикального отклонения, состоящий из предварительного усилителя, линии задержки и выходно­го усилителя, блок синхронизации, генератор развертки, усилитель горизонтального отклонения и калибраторы амплитуды и длительности.

Исследуемый сигнал подается на вход Y канала вертикально­го отклонения, включающего в себя входной делитель и усили­тель вертикального отклонения. Выходное напряжение усилителя, по­ступая на вертикальные отклоняющие пластины, управляет от­клонением электронного луча в трубке по оси Y. Для получения требуемого размера изображения на экране входной сигнал уси­ливается (или ослабевает) в канале вертикального отклонения до необходимого значения, определяемого чувствительностью труб­ки. Последовательное включение делителя напряжения и усили­теля вертикального отклонения обеспечивает значительный диа­пазон исследуемых напряжений.

При подаче переменного напряжения на вход Y электронный луч вычерчивает на экране осциллографа вертикальную линию. Для получения изображения, развернутого во времени, необходимо смещать (развертывать) луч по оси Х с равномерной скоростью. Это осуществляется подачей на отклоняющие пластины линейно изменяющегося пилообраз­ного напряжения. При равенстве периодов напряжений и развертки на экране получается неподвижное изобра­жение одного периода исследуемого сигнала. При увеличении периода пилообразного напряжения в п раз на экране появит­ся изображение п периодов исследуемого сигнала.


Напряжение развертки вырабатывает генератор развертки. Реальная кривая напряжения развертки имеет время прямого и время обратного хода - время возвращения луча в исходное положение. Для того чтобы во время обратного хода электронный луч не вычерчивал линии на экране осциллографа, его гасят на это время путем подачи отри­цательного импульса на модулятор. Исследование сигналов в ши­роком диапазоне частот обеспечивается переключением частоты пилообразного напряжения, предусмотренном в генераторе раз­вертки. Это позволяет проводить наблюдения исследуемых сигна­лов в нужном масштабе времени. Выходное напряжение генера­тора усиливается до значения, необходимого для управления электронным лучом в ЭЛТ и получения изображения требуемого размера.

Для получения устойчивого изображения на экране осцил­лографа частота пилообразного напряжения развертки должна быть кратна частоте исследуемого сигнала. Выдержать точно кратность частот на практике оказывается сложно вследствие «ухода» частоты генератора и изменения частоты исследуемого сигнала. Это приводит к не­устойчивости изображения сигнала. Для обеспечения устойчивости изображения в осциллографе имеется блок синхронизации, который осуществляет изменение частоты генератора (в некоторых пределах) в соответствии с частотой исследуемого процесса. Для этого сигнал из канала вертикально­го отклонения подается на блок синхронизации, на выходе кото­рого вырабатываются импульсы синхронно с изменением иссле­дуемого сигнала для управления генератором развертки, прину­дительно заставляя его работать с частотой, кратной частоте входного сигнала. Такой режим работы генератора развертки называется непрерывным. Он применяется при наблюдении пери­одических сигналов. При исследовании непериодической после­довательности импульсов или одиночных импульсов непрерывный режим работы приводит к тому, что положение изображения импульсов на экране по оси времени становится неопределенным. В этом случае применяют ждущий режим работы генератора, при котором генератор развертки вырабатывает пилообразный импульс только с прихо­дом исследуемого импульса. При таком режиме обеспечивается устойчивое положение изображения этих импульсов на экране.


В осциллографах предусматривается также возможность за­пуска генератора развертки от внешнего источника (внешняя синхрони­зация). Для этого имеется специальный вход «Вход синхрониза­ции» и переключатель.

Для расширения функциональных возможностей осциллогра­фа имеются дополнительные входы, позволяющие осуществить управление электронным лучом. Во многих осциллографах пре­дусмотрена возможность управления отклонением луча по оси Х внешним напряжением. Для этого у осциллографа есть «Вход X», на который подается внешнее управляющее напряжение, и соответствующий переключатель. В осциллографах имеются так­же зажимы «Вход пластин X» и «Вход пластин Y», позволяющие подавать внешнее напряжение непосредственно на пластины электронно-лучевой трубки. В некоторых осциллографах имеется вход Z, который через разделительный конденсатор (или специ­альный усилитель) соединен с модулятором М электронно-луче­вой трубки. Подавая импульсы напряжения на этот вход, можно модулировать (изменять) яркость свечения изображения на экране. Это позволяет, например, отмечать характерные точки на изображении, подавая импульсы на вход Z в необходимые мо­менты времени.

При измерении амплитудных и временных параметров иссле­дуемых сигналов обычно измеряют соответствующие геометриче­ские размеры изображения сигнала на экране и с помощью ко­эффициентов отклонения и коэффициентов развертки, характеризующих чувствительность каналов, определяют значения этих параметров. Для повышения точности измерений осциллографы имеют калибраторы амплитуды и длительно­сти, позволяющие контролировать и устанавливать номи­нальные значения коэффициентов отклонения и коэффициентов развертки. Калибраторы представляют собой генераторы прямоугольных импульсов с известными значениями амплитуды и частоты. Меняя усиление, добиваются нормированного отклонения луча на экране, что приводит к установке соответствующего коэффициента отклонения. По периоду калибровочного импульса можно проверить или установить нормированное значение ко­эффициента развертки.


Основные характеристики осциллографов. Коэффициент от­клонения отношение напряжения входного сигнала к от­клонению луча (в делениях шкалы), вызванному этим напряже­нием. У наиболее распространенных осциллографов коэффициент отклонения находится в диапазоне 50 мкВ/дел —-10 В/дел. Ко­эффициент отклонения — параметр, обратный чувствительности осциллографа к напряжению.

Полоса пропускания — диапазон частот, в пределах которого коэффициент отклонения изменяется не более чем на 3 дБ (при­мерно 30 %) относительно его значения на некоторой средней (опорной) частоте. Для низкочастотных осциллографов полоса пропускания находится в диапазоне от 0 до 1—5 МГц; для уни­версальных осциллографов верхняя частота достигает десятков мегагерц, для высокочастотных — сотен мегагерц.

Для измерения импульсных сигналов важными являются па­раметры переходной характеристики — время нарастания пере­ходной характеристики и максимальный выброс.

Коэффициент развертки отношение времени к откло­нению луча, вызванному напряжением развертки за это время. Коэффициент развертки — параметр, обратный ско­рости перемещения луча по оси X.

Основная погрешность измерения напряжения и основная погрешность измерения временных интервалов определяются максимально допускаемыми погрешностями измерения соответ­ствующих параметров при подаче на вход осциллографа стан­дартного сигнала синусоидальной или прямоугольной формы. В зависимости от значений этих погрешностей выпускают осцил­лографы четырех классов точности — 1, 2, 3, 4, имеющих, соответственно, основные погрешности измерений, не превышаю­щие 3, 5, 10, 12 %. Часто вместо основных погрешностей измере­ний нормируют основные погрешности коэффициента отклонений и коэффициента развертки, а также нелинейность отклонения и развертки.

Параметры входов осциллографа определяются входным ак­тивным сопротивлением и входной емкостью. Обычно входное сопротивление более 1 МОм, а входная емкость составляет десятки пикофарад.




<< предыдущая страница