prosdo.ru
добавить свой файл
1 2 3 4
    1. Управление технологическими процессами, предприятиями, объединениями и отраслями в целом невозможно без применения средств информационной,вычислительной и организационной техники, которые при системном их использовании в сочетании с организационными мероприятиями образуют автоматизированные системы управления. Виды АСУ


автоматизированная система управления технологическим процессом или АСУ ТП — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте

Автоматизированная система управления производством (АСУ П) — решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.

1.2- ?

1.3. По назначению алгоритма изменения задающего воздействия (или по виду выполняемых функций) Стабилизирующая Поддерживает регулируемый параметр на постоянном значении заданной точки. X=SP=const

Программная Изменяет регулируемую величину в соответствии с функцией задания во времени – программные задатчики. По количеству контуров регулирования Одноконтурные Содержащие один контур регулирования

2.1. Элементы автоматики чрезвычайно разнообразны по выполняемым функциям, конструкции, принципу действия, характеристикам, физической природе преобразуемых сигналов и т.д.

1) В зависимости от того, как элементы получают энергию, необходимую для преобразования входных сигналов, они делятся на пассивные и активные.

Пассивные элементы автоматики – это элементы, у которых входное воздействие (сигнал хвх) преобразуется в выходное воздействие (сигнал хвых) за счёт энергии входного сигнала (например, редуктор).

Активные элементы автоматики для преобразования входного сигнала используют энергию от вспомогательного источника (например, двигатель, усилитель).


2) В зависимости от энергии на входе и выходе элементы автоматики подразделяются на:

- электрические;

- гидравлические;

- пневматические;

- механические;

- комбинированные.

3) По выполняемым функциям в системах регулирования и управления элементы автоматики подразделяются на:

- датчики;

- усилители;

- исполнительные устройства;

- реле;

- вычислительные элементы;

- согласующие элементы;

- вспомогательные элементы и т.д.

Датчики воспринимают поступающую на их вход информацию об управляемой величине объекта управления и преобразуют её в форму, удобную для дальнейшего использования в устройстве автоматического управления. Большинство датчиков преобразует входной неэлектрический сигнал хвх в выходной электрический сигнал хвых. В зависимости от вида входного неэлектрического сигнала хвх выделяют:

- датчики механических величин (датчики перемещения, датчики скорости, датчики ускорения и т.д.);

- датчики тепловых величин (датчики температуры);

- датчики оптических величин (датчики излучения) и т.д.

Часто применяются датчики с двойным преобразованием сигнала, например, входной неэлектрический сигнал хвх сначала преобразуется в перемещение, а затем перемещение преобразуется в выходной электрический сигнал хвых.

Так, например, в системе автоматического регулирования высоты полёта самолёта, изменение барометрического давления, возникающее при изменении высоты полёта, преобразуется сначала в механическое перемещение центра анероидной коробки, а затем в напряжение, измеряемое с помощью потенциометра.

Усилители - это элементы автоматики, которые осуществляют количественное преобразование, усиление мощности входного сигнала хвх. В некоторых случаях одновременно с количественным преобразованием, усилители осуществляют и качественное преобразование (например, преобразование постоянного тока в переменный, в пневматических и гидравлических усилителях осуществляется преобразование перемещения в изменение давления).


В зависимости от вида энергии, получаемой усилителем, последние делятся на:

- электрические;

- гидравлические;

- пневматические;

- электрогидравлические;

- электропневматические.

Наибольшее распространение получили электрические усилители, имеющие высокую чувствительность, большой коэффициент усиления и удобные в эксплуатации.

Исполнительные устройства относятся к элементам автоматики, создающим управляющие воздействия на объект управления. Они изменяют состояние или положение регулирующего органа объекта таким образом, чтобы регулируемый параметр соответствовал заданному значению. К исполнительным устройствам, создающим управляющее воздействие в виде силы или вращающего момента, относятся силовые электромагниты, электромагнитные муфты, двигатели.

Двигатели в зависимости от вида применяемой для работы энергии могут быть:

- электрическими;

- гидравлическими;

- пневматическими.

В качестве исполнительных устройств, изменяющих состояние регулирующего органа, могут использоваться усилители или реле.

Реле – это элементы автоматики, у которых изменение выходного сигнала (хвых) происходит дискретно (т.е. скачкообразно) при достижении входным сигналом (хвх) определённого значения, вызывающего срабатывание реле.

Это значение входного сигнала называется уровнем срабатывания реле.

Мощность входного сигнала (хвх), вызывающего срабатывание реле, значительно меньше мощности, которой реле может управлять. Поэтому реле используется и как усилительный, и как исполнительный элемент.

Реле часто используются и как автоматически управляемые коммутаторы сигналов в многоканальных системах сбора и передачи данных, в которых обрабатывается информация от десятков, сотен и даже тысяч датчиков. Они применяются также в системах контроля, сигнализации, блокировки и защиты.Вычислительные элементы в устройствах автоматического управления осуществляют математические преобразования с поступающими на их вход сигналами. Эти операции осуществляются с целью обеспечения заданного алгоритма работы системы.


В простейшем случае вычислительные элементы выполняют отдельные математические операции, такие как алгебраическое суммирование, дифференцирование, интегрирование, логическое сложение, логическое умножение и т.д.

В замкнутых САУ необходимо осуществлять суммирование сигнала датчика и сигнала обратной связи. В корректирующих устройствах используется дифференцирование и интегрирование сигналов. Для выполнения этих операций главным образом используются вычислительные элементы аналогового типа.

В более сложных случаях в качестве вычислительного элемента может использоваться микропроцессор, специализированные и унифицированные ЭВМ цифрового и аналогового типов или комплекс этих машин. Такие задачи автоматического управления, как оптимизация, создание адаптивных (приспосабливающихся) САУ, использование алгоритмов управления, основанных на вероятностных и статистических методах обработки сигналов, невозможно осуществить без применения ЭВМ.Согласующие и вспомогательные элементы включаются в устройство автоматического управления для улучшения его параметров, расширения функциональных возможностей основных элементов и т.д.

В качестве согласующих элементов часто используют трансформаторы, редукторы, позволяющие согласовать параметры исполнительного элемента с параметрами объекта управления.

В системах автоматического управления, в которых качестве вычислительного элемента используется микропроцессор или ЭВМ, часто возникает необходимость согласования ЭВМ с датчиками информации и исполнительными элементами аналогового типа, широко применяемыми в автоматике. Для этой цели на входе ЭВМ устанавливаются аналого-цифровые преобразователи (АЦП). Аналого-цифровые преобразователи преобразуют механический сигнал (перемещения, скорости и т.д.) или электрический сигнал (напряжения, силы тока, сопротивления и т.д.), получаемый от аналоговых датчиков, в дискретный кодовый сигнал, способный восприниматься ЭВМ.

Управляющее воздействие в таких системах получают в дискретной форме как результат обработки в ЭВМ поступившей информации.


Если в устройстве автоматического управления в качестве исполнительного элемента используются электродвигатели постоянного или переменного тока, электромагнитные муфты, усилители мощности постоянного или переменного тока и т.д., то возникает потребность обратного преобразования дискретного сигнала ЭВМ в аналоговый сигнал, воспринимаемый исполнительным элементом.

Эта задача решается с помощью цифро-аналоговых преобразователей (ЦАП).

Они преобразуют кодовый сигнал, полученный от ЭВМ, в перемещение, напряжение, ток, частоту и т.д.Вспомогательные элементы автоматики – это стабилизаторы напряжения или тока, коммутаторы и распределители, генераторы напряжения специальной формы («пила»), формирователи импульсов, индикаторные и регистрирующие приборы, сигнальные и защитные устройства.

Эти элементы автоматики, не являясь принципиально необходимыми для работы устройства автоматического управления, в то же время позволяют увеличить точность и стабильность его работы, облегчают наладку и эксплуатацию, расширяют возможности использования этого устройства при создании САУ.

2.2.- стр 142

2.3. -По назначению алгоритма изменения задающего воздействия (или по виду выполняемых функций) Стабилизирующая Поддерживает регулируемый параметр на постоянном значении

3.1. Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Абсолютная погрешность — ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом неравенство:

ΔX > | Xmeas − Xtrue | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.


Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины (РМГ 29-99):Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

,*100 %где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:— если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.Приведённая погрешность является безразмерной величиной, либо измеряется в процентах. По характеру проявления

Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).

Систематическая погрешность — погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.


Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

3.2.-?

3.3.- Системы экстремального регулированияСпособны поддерживать экстремальное значение некоторого критерия (например минимальное или максимальное), характеризующего качество функционирования объекта. Критерием качества, который обычно называют целевой функцией, показателем экстремума или экстремальной характеристикой, может быть либо непосредственно измеряемая физическая величина (например, температура, ток, напряжение, влажность, давление), либо КПД, производительность и др.

4.1. Параметрические датчики. Служат для преобразования не электрического регулируемого или контролируемого сигнала в параметры электрических цепей (сопротивление, индуктивность, емкость). Эти датчики делятся на датчики активного сопротивления (контактные, реостатные, потенциометрические, тензодатчики, терморезисторы) и датчики реактивного сопротивления. Генераторные датчики. Служат для преобразования не электрических регулируемых или контролируемых сигналов в параметры ЭДС. Эти датчики не требуют посторонних источников энергии, так как сами являются источниками ЭДС. К параметрическим и генераторным датчикам предъявляются следующие требования: непрерывная и линейная зависимость выходной величины от входной; высокая динамическая чувствительность; наименьшее влияние на регулируемую или измеряемую величину; надежность в работе; применимость к используемой измерительной аппаратуре и источникам питания; наименьшая себестоимость; минимальная масса и габариты. Датчик (первичный преобразователь информации) – это устройство, преобразующее контролируемую и регулируемую величину в такой вид сигнала, который более удобен для воздействия на последующие элементы автоматики. В общем виде датчик можно представить в виде чувствительного элемента и преобразователя. Чувствительный элемент в автоматике выполняет функции “органов чувств”. Он нужен для преобразования контролируемой величины в такой вид сигнала, который будет удобным для измерения.


4.2.- ?

4.3.- Назначение следящей САР-изменять регулируемый параметр, произвольно изменяя его заданное значение. Подобные САР используют при необходимости корректировать заданный режим процесса в соответствии с изменившимися условиями (напр., изменять подачу пара в куб ректификац. колонны при изменении кол-ва питания).

5.1. Датчик давления — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код. Стр 17-23

5.2. -?

5.3. -?

6.1.- стр 27-30

6.2.- В резервуарных парках с резервуарами вместимостью свыше 10000 м3 или при числе резервуаров свыше шести меньшей вместимости необходимо предусматривать управление резервуарным парком из МДП.Автоматизация РП предусматривает:- централизацию управления резервуарным парком;- автоматическую защиту;- автоматическое пожаротушение.Централизация управления резервуарным парком включает:- дистанционное измерение уровня во всех резервуарах;- дистанционное измерение средней температуры нефти во всех резервуарах;- селективную сигнализацию максимального и минимального уровней во всех резервуарах;- аварийную сигнализацию при срабатывании защит;- дистанционное управление задвижками резервуарного парка и сигнализацию их положения.Для уровнемеров, используемых для учетно-расчетных операций, основная погрешность измерения не должна превышать ± 3,0 мм.В резервуарах с плавающей крышей измерение уровня допускается выполнять по положению плавающей крыши.В резервуарах с плавающей крышей следует учитывать возможность перекоса крыши. В связи с этим рекомендуется предусматривать устройства контроля угла наклона плавающей крыши.Автоматическая защита резервуарного парка предусматривает:- автоматическую защиту от перелива;- автоматическую защиту от превышения давления в трубопроводах подачи нефти в РП.Автоматическая защита от перелива должна обеспечивать прекращение поступления нефти в резервуар при достижении в нем максимального (аварийного) уровня нефти и переключение потока нефти в специально выделенную емкость.Для автоматической защиты от перелива должен использоваться датчик максимального (аварийного) уровня, не связанный с измерителем уровня.Настройка максимального (аварийного) уровня производится ниже предельного уровня, допустимого по конструкции резервуара на величину, соответствующую количеству нефти, которая может поступить в резервуар за время закрытия задвижки налива.Предельный (допустимый) уровень по конструкции резервуара определяется:- для резервуаров с плавающей крышей (или с понтоном) и для резервуаров без плавающей крыши с пеногенераторами, встроенными в стенку резервуара, - нижним краем пеногенератора минус 0,3 м;- для резервуаров без плавающей крыши с верхним вводом пены - отметкой обечайки резервуара минус 0,3 м;- максимально допустимым уровнем налива по результатам диагностирования и расчета допустимых кольцевых напряжений в стенке резервуара.Автоматическая защита от превышения давления в трубопроводах подачи нефти в резервуарный парк может выполняться путем подключения к трубопроводу, в котором повысилось давление, специально выделенной емкости. Подключение емкости должно проводиться с использованием электроприводных задвижек, параллельно которым устанавливаются механические предохранительные клапаны. Реле давления системы защиты должно настраиваться на величину на 10 % ниже, чем соответствующий предохранительный клапан.В резервуарных парках может предусматриваться контроль скорости наполнения или опорожнения резервуаров.При превышении допустимой скорости наполнения (опорожнения) открывается задвижка на линии сброса в специально выделенные емкости или подключаются дополнительные резервуары.В резервуарных парках может предусматриваться блокировка задвижек для предотвращения смешения разной нефти, последовательно перекачиваемой по трубопроводу.



следующая страница >>