prosdo.ru
добавить свой файл
1 2 3
    1. Электрическая цепь и ее элементы.


Реальная электрическая цепь - совокупность устройств, предназначенных для передачи, распределения и преобразования энергии. Содержит источники электрической энергии, приемники электрической энергии, измерительные приборы, коммутационную аппаратуру, соединительные линии и провода. Электрическая цепь представляет собой совокупность связанных определенным образом источников, потребителей (или соответственно активных и пассивных элементов) и преобразователей электрической энергии. Цепь называют пассивной, если она состоит только из пассивных элементов, и активной, если в ней также содержатся активные элементы.

Источником электрической энергии называют элемент электрической цепи, осуществляющий преобразование энергии неэлектрического вида в электрическую. Потребителем электрической энергии называют элемент электрической цепи, преобразующий электрическую энергию в неэлектрическую. Преобразователем электрической энергии называют устройство, изменяющее величину и форму электрической энергии.

Для того чтобы выполнить расчет, необходимо каждое электротехническое устройство представить его схемой замещения. Схема замещения электрической цепи состоит из совокупности идеализированных элементов(резистор, конденсатор, катушка индуктивности).

Напряжение:

Ток:

Зависимость между током и напряжением на элементе цепи называется вольт-амперной характеристикой (ВАХ) элемента, которая обычно изображается графически.

В качестве потребителя в теории электрических цепей постоянного тока выступает резистор, характеризующийся сопротивлением (R), для которого справедлив закон Ома:




Проводимость: измеряется в Сименсах (См).

Источники энергии моделируются с помощью источника ЭДС ( Е), или источника напряжения, и источника тока (J). В большинстве случаев с увеличением тока напряжение источника уменьшается.

Идеализированный источник напряжения – это элемент цепи, напряжение которого не зависит от тока и является заданной постоянной величиной. В действительности мы имеем дело с реальными источниками напряжения, которые отличаются от идеальных источников тем, что их напряжение с ростом потребляемого тока уменьшается. Любой реальный источник при сопротивлении нагрузки >> R0 может быть приведен к идеализированному следующим образом:



Идеализированный источник тока – это элемент цепи, ток которого не зависит от напряжения и является заданной постоянной величиной.

У реального источника тока с ростом напряжения вырабатываемый ток уменьшается. Любой реальный источник тока может быть приведен к идеализированному следующим образом :

,где J, G0 – постоянные параметры.


  1. Обобщенный закон Ома.



Рассмотрим закон Ома для участка цепи, содержащего активные и пассивные элементы



.

Объединив эти две формулы, получаем:



Отсюда ток

Аналогияно:

)

Объединив эти две формулы в одну, получим:

, - обобщенный закон Ома.

Обобщенный закон Ома для ветви, содержащей источник тока:

Для содействующего источника тока


Для противодействующего источника тока




Объединенная форма обобщенного закона Ома для ветвей, содержащих источник тока:

(1.25)

где верхний знак соответствуют схеме, на которой UJ и J сонаправлены.


  1. Структура электрической цепи.

К структурным или топологическим свойствам цепи относятся такие ее особенности, которые не связаны с характеристиками входящих в нее активных и пассивных элементов. К ним относятся следующие понятия: ветвь, узел, контур.

Ветвью электрической цепи называют участок, элементы которого включены последовательно друг за другом и обтекаются одним и тем же током.

Узлом электрической цепи называют место соединения нескольких ветвей. Узел связывает не менее трех ветвей и является точкой разветвления.

Ветви считаются соединенными последовательно, если они обтекаются одним и тем же током. Ветви считаются соединенными параллельно, если они присоединены к одной и той же паре узлов.

Контуром электрической цепи называется совокупность следующих друг за другом ветвей. Узлы, в которых эти ветви соединяются, являются точками разветвления. При обходе замкнутого контура начальная и конечная точки совпадают.

Цепь, в которой отсутствуют разветвления, называют одноконтурной, при наличии разветвлений – многоконтурной. Многоконтурная цепь характеризуется числом независимых контуров. Совокупность независимых контуров определяется тем, что каждый из последующих контуров, начиная от элементарного, отличается по меньшей мере одной новой ветвью. Число независимых контуров может быть определено по формуле Эйлера:

где mколичество ветвей, n – количество узлов, причем m > n всегда.

  1. Законы Кирхгофа.

I закон Кирхгофа (для токов): алгебраическая сумма токов в узле равна нулю, или сумма притекающих и сумма истекающих токов одинаковы. Как правило, при суммировании притекающие токи берутся со знаком «+», а истекающие – со знаком «–».

II закон Кирхгофа (для напряжений): алгебраическая сумма ЭДС всех источников, встречающихся при обходе контура, равна алгебраической сумме напряжений на всех потребителях. В алгебраической форме

В сумму со знаком «+» входят ЭДС содействующих источников и со знаком «–» ЭДС противодействующих источников. При суммировании напряжений потребителей со знаком «+» берутся напряжения на всех потребителях, токи которых направлены согласно с обходом контура, и со знаком «–» берутся напряжения всех остальных потребителей.

8) Эквивалентные преобразования пассивных электрических цепей.

Эквивалентное преобразование части пассивной электрической цепи состоит в такой ее замене другой пассивной цепью, при которой остаются неизменными токи и напряжения остальной цепи, не подвергшейся преобразованию. К простейшим преобразованиям относятся замена последовательно и параллельно соединенных потребителей эквивалентным потребителем.

При последовательном соединении роль эквивалентного сопротивления играет сумма сопротивлений всех потребителей (рис. 1.11.).

(II З. К.) =>

При параллельном соединении роль эквивалентной проводимости (или проводимости эквивалентного потребителя) играет сумма проводимостей всех потребителей (рис. 1.12.).



Это следует из I закона Кирхгофа:



9-10) Эквивалентное преобразование «Звезда – треугольник»

В узлах a, b, c и треугольник , и звезда на рис. 1.14. соединяются с остальной частью схемы. Преобразование треугольника в звезду должно быть таковым, чтобы при одинаковых значениях потенциалов одноименных точек треугольника и звезды притекающие к этим точкам токи были одинаковы, тогда вся внешняя схема «не заметит» произведенной замены.


Выразим Uab треугольника через параметры потребителей и притекающие к этим узлам токи. Запишем уравнения Кирхгофа для контура и узлов a и b.



Заменим в первом уравнении токи I3 и I2 на соответствующие выражения:





Теперь получим выражение для этого же напряжения при соединении потребителей звездой:

=>

Аналогично

Таким образом, сопротивление луча звезды равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений трех сторон треугольника.

Формулы обратного преобразования можно вывести независимо, либо как следствие соотношений через проводимости:



или через сопротивления:



11) Баланс мощности.

Согласно закону Джоуля-Ленца, вся электрическая энергия, сообщаемая проводнику в результате работы сил электрического поля, превращается в тепловую энергию:

[Дж]

[Вт]

По обобщенному закону Ома.



Выражения, записанные для ветви с источником напряжения, справедливы и для ветви с источником тока, если произвести подстановку вместо и вместо .

Отсюда следует закон сохранения энергии, согласно которому алгебраическая сумма мощностей, подводимых ко всем ветвям разветвленной электрической цепи, равна нулю:




Существует еще одна форма записи баланса мощности:

.

В левой части суммируются мощности источников энергии, а в правой – мощности, преобразованные в потребителях в тепло. Мощности источников, отдающих энергию, берутся со знаком «+», а работающих в режиме потребителей – со знаком «–».

12) Расчет неразветвленных электрических цепей

Основой расчета одноконтурных (неразветвленных) электрических цепей, содержащих источники обоих видов и потребители, служат рассмотренные ранее законы Ома и Кирхгофа.

Если в цепи нет источников тока, а параметры потребителей (R) и источников напряжения (Е) заданы, то задача обычно состоит в определении тока контура. Положительное направление искомого тока выбирается произвольно и составляется уравнение:



Если в цепи, кроме потребителе ( R) и источников ЭДС (E), имеется источник тока (J), то задача обычно сводится к определению напряжения на источнике тока UJ, т.к. ток контура I совпадает с заданным током источника J. Положительная полярность UJ выбирается произвольно, но предпочтительно у острия стрелки ставить знак «+» (такой полярности соответствует формула: ). Истинная полярность UJ совпадает с выбранной, если при расчете UJ выражается положительным числом, и противоположна выбранной, если UJ < 0. Искомое падение напряжения на источнике тока UJ при отсутствии источников ЭДС определяется по формуле .

13) Метод пропорциональных величин.

В ветви наиболее удаленной от источника (R6) задаются некоторым значением тока или напряжения. Для удобства расчетов обычно это 1А или 1В. Затем перемещаясь к началу цепи определяют поочередно токи и напряжения всех ветвей вплоть до ветви, содержащей источник. Тем самым определяют какие напряжение Uвх и ток Iвх. должен иметь источник для того, чтобы вызвать во всех ветвях токи и напряжения вычисленных значений. Если ЭДС (Е) или задающий ток (J) с этими значениями не совпадают, то необходимо пропорционально изменить вычисленные значения токов и напряжений ветвей путем умножениях их на отношение или .




Пусть I6 = 1. Тогда

I3 можно определить по I закону Кирхгофа:

U24 определяем по II закону Кирхгофа:



По закону Ома: , по I закону Кирхгофа: .



14) Метод эквивалентных преобразований. Формула токов в параллельных ветвях.

Разветвленную цепь с одним источником обычно упрощают, преобразуя в неразветвленную.



Если цепь питается источником тока, то определяется напряжение

Дальнейший расчет: .

Ток I3 определяется по закону Кирхгофа:



При расчетах удобно пользоваться формулой о токах в двух параллельных пассивных ветвях. Выведем ее на примере схемы. Напряжение по закону Ома определяется по формуле



Тогда ток

15) Метод уравнений Кирхгофа.


  1. Обозначить токи ветвей и произвольно выбрать их положительное направление.

  2. Произвольно выбрать опорный узел и совокупность p = m n + 1 независимых контуров.

  3. Для всех узлов, кроме опорного, составить уравнения по I закону Кирхгофа. Таких уравнений должно быть (n 1).

  4. Для каждого выбранного контура составить уравнения по II закону Кирхгофа. Таких уравнений должно быть p.

  5. Система m уравнений Кирхгофа с m неизвестными токами решается совместно и определяются численные значения токов.
  6. Если необходимо, рассчитать с помощью обобщенного закона Ома напряжения ветвей или разность потенциалов узлов.


  7. Проверить правильность расчета с помощью баланса мощности.

Если в цепи есть q источников тока и контуры выбирать таким образом, чтобы каждый источник тока вошел только в один контур, то количество уравнений по II закону Кирхгофа можно уменьшить до m n + 1 q.

16)Метод Контурных Токов

За искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. . Основан на II законе Кирхгофа

По найденным контурным токам при помощи I закона Кирхгофа определяются токи ветвей.

Таким образом, методика расчета цепи постоянного тока методом контурных токов следующая:

  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.

  3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида.

Общее сопротивление контура (Rij = Rji) представляет собой алгебраическую сумму сопротивлений потребителей ветви (нескольких ветвей), одновременно принадлежащих i-ому и j-ому контурам. В эту сумму сопротивление входит со знаком «+», если контурные токи протекают через данное сопротивление в одном направлении (согласно), и знак «–», если они протекают встречно.

Собственное сопротивление контура (Rii) представляет собой арифметическую сумму сопротивлений всех потребителей, находящихся в i-ом контуре.

Контурные ЭДС представляют собой алгебраическую сумму ЭДС источников, входящих в контур. Со знаком «+» в эту сумму входят ЭДС источников, действующих согласно с обходом контура, со знаком «–» входят ЭДС источников, действующих встречно.


  1. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.



  1. Определить токи ветвей через контурные токи по I закону Кирхгофа.

  2. Проверить правильность расчетов при помощи баланса мощности.

Если в цепи содержится q источников тока, количество совместно рассматриваемых уравнений сокращается на q и становится равным р q, поскольку токи в таких ветвях известны Необходимо, чтобы каждый источник тока входил только в один контур.

17) Метод узловых потенциалов.

В том случае, когда п-1 < p (n – количество узлов, p – количество независимых контуров), данный метод более экономичен, чем метод контурных токов. Выводится из первого закона Кирхгофа и обобщенному закону Ома(через потенциалы).

  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать опорный узел (n)и пронумеровать все остальные (n-1)-e узлы.

  3. Определить собственные и общие проводимости узлов, а также узловые токи, т.е. рассчитать коэффициенты в системе уравнений.

Собственная проводимость узла (Gii) представляет собой арифметическую сумму проводимостей всех ветвей, соединенных в i-ом узле.

Общая проводимость i-ого и j-ого узлов (Gij = Gji) представляет собой взятую со знаком «–» сумму проводимостей ветвей, присоединенных одновременно к i-ому и j-ому узлам.

Проводимости ветвей с источниками тока полагаются равными нулю и в собственные и общие проводимости не входят!


Узловой ток (Jii) состоит из двух алгебраических сумм: первая содержит токи источников тока, содержащиеся в ветвях, соединенных в i -ом узле; вторая представляет собой произведение ЭДС источников напряжения на проводимости соответствующих ветвей, соединенных в i -ом узле. Со знаком «+» в эту сумму входят E и J источников, действие которых направлено к узлу, со знаком «–» остальные.


  1. Записать систему уравнений в виде



В этой системе каждому узлу соответствует отдельное уравнение.

  1. Полученную систему уравнений решить относительно неизвестных ( 1) потенциалов при помощи метода Крамера.

  2. С помощью обобщенного закона Ома рассчитать неизвестные токи.

  3. Проверить правильность расчетов при помощи баланса мощности.

Порядок расчета не зависит от вида источников, действующих в цепи. Однако, расчет упрощается в случае, когда между одной или несколькими парами узлов включены идеализированные источники ЭДС. Тогда напряжения между этими парами узлов становятся известными величинами, определенными условиями задачи. Для успешного решения подобных задач необходимо правильно обозначить опорный узел, в качестве которого может быть выбран только один из узлов, к которым присоединена ветвь с идеализированным источником ЭДС.

Если таких ветвей q, то количество уравнений в системе сократится до k = n 1 q.

18) Метод двух узлов

Для разветвленной цепи, имеющей только два узла и произвольное количество ветвей, метод узловых потенциалов вырождается в метод двух узлов. Решение сводится к отысканию значения потенциала одного из узлов, т.к. потенциал другого узла может быть принятым равным нулю.


Система уравнений превращается в одно уравнение:

(2.15)

при условии, что

После определения U12 токи ветвей и напряжения источников тока находят при помощи обобщенного закона Ома.

19) Принцип суперпозиции. Метод наложения.

Линейная электрическая цепь описывается системой линейных уравнений Кирхгофа. Это означает, что она подчиняется принципу наложения (суперпозиции), согласно которому совместное действие всех источников в электрической цепи совпадает с суммой действий каждого из них в отдельности. Мощность как квадратичная функция тока или напряжения принципу суперпозиции не подчиняется.

Метод наложения опирается на принцип наложения и заключается в следующем: ток или напряжение произвольной ветви или участка разветвленной электрической цепи постоянного тока определяется как алгебраическая сумма токов или напряжений, вызванных каждым из источников в отдельности.


  1. Произвольно задать направление токов в ветвях исследуемой цепи.

  2. Исходную цепь, содержащую n источников, преобразовать в n подсхем, каждая из которых содержит только один из источников, прочие источники исключаются следующим образом: источники напряжения замыкаются накоротко, а ветви с источниками тока обрываются. При этом необходимо помнить, что внутренние сопротивления реальных источников играют роль потребителей и поэтому они должны оставаться в подсхемах.
  3. Определить токи каждой из подсхем, задавшись их направлением в соответствии с полярностью источника, любым из известных методом. В большинстве случаев расчет ведется по закону Ома с использованием метода эквивалентных преобразований пассивных цепей.


  4. Полный ток в любой ветви исходной цепи определяется как алгебраическая сумма токов вспомогательных подсхем, причем при суммировании со знаком «+» берутся токи подсхем, направление которых совпадает с направлением тока в исходной цепи, со знаком «–» остальные.


20) Теорема об активном двухполюснике. Метод эквивалентного генератора.

При расчете тока в одной из ветвей разветвленной цепи, содержащей произвольное число источников и потребителей, удобно рассматривать цепь, состоящую из двух частей: искомой ветви и остальной части. По отношению к рассматриваемой ветви вся остальная часть цепи является активным двухполюсником, и задача заключается в определении тока или напряжения на зажимах активного двухполюсника при подключении к нему потребителя с сопротивлением R..

Согласно II закону Кирхгофа ток не изменится, если в цепь, образованную активным двухполюсником и потребителем, включить последовательно два идеализированных встречно направленных источника с одинаковыми ЭДС (рис. 2.10). Величину каждой из них выбираем совпадающей с напряжением UХХ на зажимах активного двухполюсника в режиме холостого хода, который имеет место при отключенном потребителе.

(2.16)

Ток I в цепи с двумя источниками определим методом наложения. С этой целью источники разбиваем на две группы:

1. Источники активного двухполюсника и Е1, которые сохраняются в подсхеме.

Согласно II закону Кирхгофа:

поскольку .

2. все потребители активного двухполюсника и Е2, сохраняются в подсхеме на рис. 2.12.

Поскольку I = 0, полный ток I =I.

Если эквивалентное сопротивление пассивного двухполюсника, образованного коротким замыканием источников ЭДС и обрывом ветвей, содержащих источники тока, обозначить через Rвх, получим простую одноконтурную схему (рис. 2.13), которую можно рассчитать по закону Ома:


Эта формула отражает теорему об активном двухполюснике или об эквивалентном источнике напряжения: относительно любой ветви разветвленной электрической цепи вся остальная часть схемы может быть представлена как источник напряжения, ЭДС которого равна UXX, а внутренне сопротивление равно Rэкв.

При коротком замыкании ветви с нагрузкой R = 0 ток превращается в ток короткого замыкания:



Параметры активного двухполюсника можно определить опытным путем. Для этого необходимо разомкнуть i-ую ветвь и измерить , затем замкнуть накоротко Ri и измерить IКЗ :

Методика расчета линейной электрической цепи методом эквивалентного генератора:


  1. Отключается потребитель в ветви с искомым током и на зажимах обозначается UXX по направлению тока.

  2. В образовавшейся более простой цепи находится Uхх с помощью II закона Кирхгофа, записанного для любого контура, содержащего Uхх. Токи в ветвях упрощенной схемы определяются любым известным методом.

  3. Определяется Rвх на зажимах разомкнутой ветви при условии E=0 и J=0. В полученной пассивной цепи пользуются правилами эквивалентных преобразований для потребителей.

  4. По найденным Uхх и Rвх определяется ток в искомой ветви, значение которого может быть и отрицательным.

Замечание 1: Rвх можно найти по формуле IКЗ при условии Ri=0 любым известным методом.

Замечание 2: если ветвь, в которой определяется ток, содержит источник ЭДС, следует данный источник отнести к активному двухполюснику, отключив только сопротивление Ri. Тогда величина E войдет в расчет UXX .


22) Электрическая цепь переменного тока и ее характеристики.

Переменным током i(t) и напряжением u(t) называют токи и напряжения, изменяющиеся во времени.

Сигналы, мгновенные значения которых повторяются через определенный фиксированный промежуток времени, называются периодическими, а этот промежуток времени – периодом. Такие сигналы описываются следующим образом:

где Т – период, с.

.

Любой несинусоидальный сигнал может быть представлен в виде суммы синусоидальных сигналов различной частоты с помощью разложения в ряд Фурье. И, таким образом, расчет подобных цепей может быть сведен к расчету цепей синусоидального тока и напряжения.

,

где мгновенное значение; амплитуда переменного сигнала – максимальная по модулю его величина; фаза гармонического сигнала – аргумент при синусе в каждый момент времени; начальная фаза – значение аргумента в начальный момент времени (t = 0). Фаза измеряется в радианах или градусах.



За период Т на резисторе с сопротивлением R при синусоидальном изменении тока выделится тепловая энергия:



Таким образом, действующий ток численно равен такому постоянному току, который за время t = T выделяет в том же сопротивлении такое же количество тепла, что и переменный.

.

Установим связь между действующим и амплитудным значением гармонического сигнала на примере тока. Если ток изменяется по закону , то

Аналогично получим .

Мгновенная мощность а




где  – сдвиг фазы тока по отношению к напряжению, ;

– постоянная составляющая мгновенной мощности;

 – гармоническая составляющая, которая изменяется с двойной угловой частотой.

Средняя мощность за период называется активной мощностью:

.

23) Электрический ток в активном сопротивлении.
Пусть тогда ,



Отсюда .

Сдвиг фаз между напряжением и током .

Поскольку , то для действующих значений справедливо

, где Z полное сопротивление цепи (импеданс), равное отношению действующих значений напряжения и тока.



Активная мощность

24) Электрический ток в индуктивности.

Индуктивность элемент цепи, который учитывает энергию магнитного поля . Индуктивные элементы можно рассматривать как аккумуляторы (накопители энергии).

При изменении тока в индуктивности возникает ЭДС самоиндукции eL. По закону Ленца eL препятствует изменению тока. Чтобы через индуктивность проходил переменный ток, к ее выводам надо приложить напряжение uL, равное по величине и противоположное по направлению ЭДС eL:

где L  коэффициент пропорциональности, называемый индуктивностью Гн.

Так как электрическому току всегда сопутствует магнитное поле, любой обтекаемый током участок цепи, представляющий электротехническое устройство, должен характеризоваться индуктивностью.

Если тогда


Закон Ома для цепи с индуктивным элементом .


Начальная фаза напряжения , сдвиг фаз .

(3.16)

Из выражения следует, что средняя мощность за период, а следовательно, и активная мощность равны нулю. Индуктивность – реактивный элемент.

Мгновенная мощность может быть положительной, отрицательной и равной нулю. Если p(t)  0, индуктивность заряжается энергией в виде энергии магнитного поля; если p(t)  0, индуктивность возвращает энергию источнику.

Индуктивная проводимость

.

25) Гармонический ток в емкости

Емкостный элемент цепи с емкостью С учитывает энергию электрического поля .

Ток в ветви с емкостью равен скорости изменения заряда на электродах, и при указанном положительном направлении тока знак тока совпадает со знаком производной по времени от заряда q.

.Единица измерения емкости – фарада (Ф).

Пусть тогда

.

Отсюда  

Емкостное сопротивление .

Полное сопротивление Z также равно XC.

Фаза тока , а сдвиг фаз .

Мгновенная мощность

.

Если p(t)  0, емкость заряжается энергией в виде энергии электрического поля; если p(t)  0, емкость возвращает энергию источнику. Средняя мощность за период Pср = 0, а, следовательно, и активная мощность равна нулю, что означает, что происходит обмен энергией без потерь, емкость – реактивный элемент.

проводимость





следующая страница >>