prosdo.ru
добавить свой файл
1
1. Выпуклые функции


2. Непрерывность выпуклых функций

3. Поляра: определение, примеры, свойства

4. Теорема о биполяре и следствия

5. Экстремальные точки, конечномерная теорема Крейна-Мильмана

6. Экспонированные точки, теорема Страшевича

7. Выпуклые многогранники: два определения

8. Грани выпуклых множеств

9. Неограниченные выпуклые множества, касательный и асимптотический конус

10. Острые конусы

11. Расстояние по Хаусдорфу, теорема о компактности множества подмножеств

12. Метрика Хаусдорфа на пространстве выпуклых компактов

13. Непрерывность суммы по Минковскому и объёма на пространстве выпуклых компактов

14. Объём многогранника, следствие о суммарном давлении

15. Теорема о полиномиальном разложении объёма линейной комбинации

16. Смешанные объёмы: определение, алгебраические свойства

17. Формула Минковского и монотонность смешанных объёмов

18. Неравенство Брунна-Минковского и следствия

19. Площадб границы выпуклого тела, изопериметрическое неравенство

20. Неравенство Минковского между смешанными объёмами

21. Поверхности (подмногообразия), прообразы регулярных значений

22. Регулярнопараметризованные поверхности, локальные координаты на многообразии

23. Касательное пространство подмногообразия

24. Касательное пространство к прообразу. Трансверсальные пересечения

25. Касательное пространство параметризованной поверхности. Представление поверхности графиком

26. Гладкие отображения поверхностей, дифференцирование


27. Первая форма и внутренняя метрика поверхности. Изометрии

28. Площадь (объём) поверхности

29. Вторая форма и оператор Вейнгартена

30. Главные кривизны и главные направления, теоремы Родрига и Эйлера

31. Гауссова и средняя кривизна, вычисление кривизн в координатах

32. Площади параллельных поверхностей, кривизны и смешанные объёмы

33. Кривые на поверхности, теорема Менье

34. Формулы типа Френе для кривой на поверхности, специальные кривые

35. Ковариантное дифференцирование

36. Символы Кристоффеля, выражение их через метрический тензор

37. Выражение ковариантного дифференцирования через символы Кристоффеля

38. Деривационные формулы, единственность поверхности с заданными первой и второй формой

39. Геодезические, экспоненциальное отображение

40. Лемма Гаусса, геодезические и кратчайшие