prosdo.ru
добавить свой файл
1
4921.02.01;МТ.01;1


_______________ игры получаются в тех случаях, когда, в игре n игроков разрешается образовывать определённые коалиции

кооперативные

_____________________ характеристическая функция появляется, когда в голосующем коллективе имеется некоторое “ядро”, голосующее с соблюдением правила “вето”, а голоса остальных участников оказываются несущественными

Простейшая

_____________игры с характеристической функцией υ называется такая коалицияT, чтоυ(S) = υ(ST)

Носителем

Аксиома ____________ :если есть две игры с характеристическими функциями υ′ и υ¢¢, тоϕi(υ′ + υ¢¢) = ϕi(υ′) + ϕi(υ¢¢),т.е. ради “справедливости” необходимо считать, что при участии игроков в двух играх их выигрыши в отдельных играх должны складываться

агрегации

Аксиома ______________: для любой перестановки π иi
Nдолжно выполняться(πυ) = ϕi(υ),т.е. игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши

симметрии

Аксиома ______________: Если
S– любой носитель игры с характеристической функцией υ, то= υ(S)

эффективности

В __________________ играх исход формируется в результате действий тех самых игроков, которые в этой ситуации получают свои выигрыши

бескоалиционных

В общем случае игра ___________ определяется матрицей

2x2

Вектором __________ (вектором Шепли)игры с характеристической функцией υ называетсяn-мерный векторϕ(υ) = (ϕ1(υ), ϕ2(υ), ..., ϕn(υ)),удовлетворяющий аксиомам Шепли

цен

Во всякой существенной игре с постоянной суммой _________ пусто


с-ядро

Всякая кооперативная игра двух игроков с нулевой суммой является ______________

несущественной

Графический метод используется для игр

2´n и m´2

Если α - нижняя цена игры, а β - верхняя и игра не имеет седловой точки, то

α  β

Если в игре все игроки имеют конечное число возможных стратегий, то она называется

матричной

Если игра ________ имеет седловую точку , то игра имеет решение в чистых стратегиях

2x2

Если матричная игра имеет седловую точку в _________ стратегиях, то нахождением этой седловой точки заканчивается исследование игры

чистых

Если функция ___________ является выпуклой, то такая игра называетсявыпуклой

выигрышей

Естественным обобщением матричных игр являются, в которых хотя бы один из игроков имеет бесконечное количество возможных стратегийБ) Задачу исследования операций называют корректной,если она не имеет решения

бесконечные антагонистические игры

Игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий, считается

непрерывной

Игры с выпуклыми непрерывными функциями выигрышей называются _______________

выпуклыми

Известны примеры ___________________ игр, которые не имеют Н-М-решений

кооперативных

Конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока, называются

биматричными

Кооперативная игра называется__________, если все значения её характеристической функции равны нулю

нулевой

Кооперативная игра с характеристической функцией υ имеет (0,1)-редуцированную форму, если выполняются соотношения:

υ(i) = 0 (iN),υ(N) = 1


Кооперативные игры считаются___________, если для любых коалицийK
иLвыполняется неравенствоυ(K) + υ(L)<>υ(KL)

существенными

Матричная игра, в которой хотя бы один из игроков имеет бесконечное количество возможных стратегий, называется

бесконечной антагонистической игрой

Матричные игры относятся к классу

антагонистических игр

Множество вполне устойчивых дележей в кооперативной игре называется этой игры

с-ядром

Множество классов стратегической эквивалентности существенных игр четырёх игроков ____________и зависит от трёх произвольных параметров

бесконечно

Ни одна строго доминируемая __________стратегия игрока не содержится в спектре его оптимальной стратегии

чистая

Н-М-решение кооперативной игры не может состоять только из одного дележа, т.к. в этом случае характеристическая функция игры _________________

несущественная

Оптимальные ___________стратегии и цена игры называютсярешением матричной игры

смешанные

По количеству _______________игры делятся на конечные и бесконечные

стратегий

Решения существенных кооперативных игр состоят более, чем из одного дележа

существенных

Свойства оптимальных ___________ стратегий и цены игры помогают находить или проверять решения, но они ещё не дают в общем виде приемлемых методов решения игры

смешанных

Свойство _____________ : для бескоалиционной игры с постоянной суммой сумма выигрышей коалиции и остальных игроков должна равняться общей сумме выигрышей всех игроков

дополнительности

Свойство _____________ : коалиция, не содержащая ни одного игрока, ничего не выигрывает


персональности

Свойство _____________ : общий выигрыш коалиции не меньше суммарного выигрыша всех участников коалиции

супераддитивности

Свойство________________означает, что сравниваемый коалицией делёжxдолжен быть, реализуемым этой коалицией: сумма выигрышей каждого из членов коалиции не должна превосходить уверенно получаемое ею количество

эффективности

Спектром смешанной стратегии игрока в конечной антагонистической игре называется множество всех его ___________стратегий, вероятность которых согласно этой стратегии положительна

чистых

Теорема ______ : Каждая биматричная игра имеет, по крайней мере, одну ситуацию равновесия

Нэша

Укажите игру, которая является бесконечно антогонистической

Игры двух лиц с произвольной суммой

Укажите, какие утверждения верны:А)А антагонистическом конфликте цели сторон оказываютсястрогопротивоположнымиБ) Конечная бескоалиционная игре двух игроков полностью определяется двумя матрицами проигрышей для двух игроков

А - да, Б - нет

Укажите, какие утверждения верны:А) Антагонистические игры никак не затрагивают своими описаниями конфликты с числом строк, большим, чем три.Б) Содержательная острота конфликта не обязательно соответствует его формальной антагонистичности

А - нет, Б - да

Укажите, какие утверждения верны:А) Бескоалиционные игры – игры, в которыхигроки не имеют права вступать в соглашения, образовывать коалицииБ) Бесконечные антагонистические игры - игры, в которых хотя бы один из игроков имеет бесконечное количество возможных стратегий

А – да, Б - да

Укажите, какие утверждения верны:А) Бескоалиционные игры: игроки не имеют права вступать в соглашения, образовывать коалиции.Б) Коалиционные (кооперативные) – могут вступать в коалиции

А – да, Б - да


Укажите, какие утверждения верны:А) Биматричные игры решать проще матричныхБ) Главным в исследовании игр является понятие оптимальных стратегий игроков

А - нет, Б - да

Укажите, какие утверждения верны:А) В зависимости от количества выигрышей различают игры двух иnигроковБ) По количеству стратегий игры делятся на конечные и бесконечные

А - нет, Б - да

Укажите, какие утверждения верны:А) Вигре с нулевой суммойобщая сумма выигрышей всех игроков равна нулюБ) Для преодоления нестабильности игры используютсмешанные стратегии,которые заключаются в случайном че­редовании чистых стратегий

А – да, Б - да

Укажите, какие утверждения верны:А) В конфликтах с двумя участниками интересы сторон вовсе не обязаны быть противоположными.Б) Если любые две ситуации сравниваются игроками по их предпочтительности противоположным образом, различие разностей в оценках этой предпочтительности оставляет место для соглашений, компромиссов и коопераций

А – да, Б - да

Укажите, какие утверждения верны:А) В кооперативных играх коалиции наперёд определеныБ) Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные

А – да, Б - да

Укажите, какие утверждения верны:А) В кооперативных играх коалиции не определены наперед.Б) Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии.

А - нет, Б - да

Укажите, какие утверждения верны:А) В общем случае игра 2 2 определяется матрицей.Б) Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий

А – да, Б - да

Укажите, какие утверждения верны:А) В существенной игре с более чем одним игроком множество дележей конечно.Б) Смысл определения стратегической эквивалентности кооперативных игр состоит втом что их характеристические функции отличаются только масштабом измерения выигрышейи начальным капиталом


А - нет, Б - да

Укажите, какие утверждения верны:А) Всякая несущественная игра стратегически эквивалентна нулевойБ) В несущественной игрес-ядро не существует

А - да, Б - нет

Укажите, какие утверждения верны:А) Главным в исследовании игр является понятие оптимальных стратегий игроков.Б) Исследование в матричных играх начинается с нахождения её седловой точки в смешанных стратегиях

А - да, Б - нет

Укажите, какие утверждения верны:А) Для матричных игр доказано, что любая из них не имеет решенияБ) По характеру выигрышей игры делятся на: игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой

А - нет, Б - да

Укажите, какие утверждения верны:А) Для соблюдения секретности каждый игрок применяет свои стратегии в зависимости от выбора другого игрокаБ) В несущественной игрес-ядро не существует

А - нет, Б - нет

Укажите, какие утверждения верны:А) Если в игре есть седловая точка в чистых стратегиях, то можно найти нижнюю и верхнюю чистые цены этой игры, которые указывают, что игрок 1 не должен надеяться на выигрыш больший, чем верхняя цена игры, и может быть уверен в получении выигрыша не меньше нижней цены игрыБ) Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий

А - нет, Б - да

Укажите, какие утверждения верны:А) Если смешанная стратегия одного из игроков содержится в спектре некоторой его оптимальной стратегии, то выигрыш этого игрока в ситуации, образованной данной чистой стратегией и любой оптимальной стратегией другого игрока, равен значению конечной антагонистической игры.Б) Исключение доминируемых (нестрого) стратегий может привести к потере некоторых решений

А - нет, Б - да


Укажите, какие утверждения верны:А) Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей полученияБ) По количеству стратегий игры делятся на конечные и бесконечные

А – да, Б - да

Укажите, какие утверждения верны:А) Из свойств рефлексивности, симметрии и транзитивности вытекает, что множество всех характеристических функций единственным образом распадается на попарно непересекающиеся классы.Б) Свойство аддитивности означает, что сравниваемый коалицией делёжxдолжен быть, реализуемым этой коалицией: сумма выигрышей каждого из членов коалиции не должна превосходить уверенно получаемое ею количеств

А - да, Б - нет

Укажите, какие утверждения верны:А) Исключение доминируемых (нестрого) стратегий может привести к потере некоторых решенийБ) Если функция выигрышей является выпуклой, то такая игра называетсявыпуклой

А – да, Б - да

Укажите, какие утверждения верны:А) Исследование в матричных играх начинается с нахождения её седловой точки в чистых стратегияхБ) Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии

А – да, Б - да

Укажите, какие утверждения верны:А) Кооперативные игры получаются в тех случаях, когда, в игре n игроков разрешается образовывать определённые коалиции.Б) Число всевозможных коалиций значительно растёт в зависимости от числа всех игроков в данной игре

А – да, Б - да

Укажите, какие утверждения верны:А) Оптимальное решение может не принадлежать множеству допустимых решений задачиБ) На практике для решения задачи многокритери­альной оптимизации чаще используют метод, известный как метод компромиссов

А - нет, Б - да

Укажите, какие утверждения верны:А) По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, типа дуэлейБ) Доказано, что матричные игры имеют решения, однако не разработано практически приемлемых методов их нахождения


А - да, Б - нет

Укажите, какие утверждения верны:А) Понятие Н-М-решения отражает только в очень малой степени черты справедливости.Б) Суть подхода Шепли в том, что он строиться на основании аксиом, отражающих справедливость дележей

А – да, Б - да

Укажите, какие утверждения верны:А) При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервалаБ) Выпуклые игры называют часто выпукло-вогнутыми, т.к. игра в них имеет седло­образное ядро, а так как ядро седлообразное, то игра имеет седловую точку в чистых стратегиях

А – да, Б - да

Укажите, какие утверждения верны:А) При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервала.Б) Если в игре все игроки имеют конечное число возможных стратегий, то она называется бесконечной

А - да, Б - нет

Укажите, какие утверждения верны:А) При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервала.Б) По виду функций выигрыша игры делятся на: игры с нулевой суммой и игры с ненулевой суммой

А - да, Б - нет

Укажите, какие утверждения верны:А) Смешанная стратегия есть частный случай чистой стратегии.Б) Геометрически выпуклая функция изображает дугу, график которой расположен ниже стягивающей её хорды

А - нет, Б - да

Укажите, какие утверждения верны:А) Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий.Б) Чистая стратегия есть частный случай смешанной стратегии

А – да, Б - да

Укажите, какие утверждения верны:А) Смешанной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий.Б) В кооперативных играх коалиции наперёд определены


А - нет, Б - да

Укажите, какие утверждения верны:А) Смысл носителя T состоит в том, что любой игрок, не принадлежащий T, является нейтральным, он не может ничего внести в коалицию и ему ничего не следует выделять из общих средств.Б) Игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши

А – да, Б - да

Укажите, какие утверждения верны:А) Содержательная острота конфликта не обязательно соответствует его формальной антагонистичности.Б) В несущественной игре имеется больше одного дележа

А - да, Б - нет

Укажите, какие утверждения верны:А) Спектром смешанной стратегии игрока в конечной антагонистической игре называется множество всех его смешанных стратегий, вероятность которых согласно этой стратегии положительнаБ) В зависимости от количества игроков различают игры двух иnигроков

А - нет, Б - да

Укажите, какие утверждения верны:А) Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партииБ) Каждый раз применение игроком одной чистой стратегии не исключает применение другой, так как чистые стратегии являются совместными событиями

А - да, Б - нет

Укажите, какие утверждения верны:А) Условие предпочтительности отражает необходимость “единодушия” в предпочтении со стороны коалиции.Б) В любой существенной игре имеется только один делёж, поэтому никаких доминирований в ней нет

А - да, Б - нет

Характеристическая функция называется_____________, если она принимает только два значения: 0 и 1

Простая